Mathématiques de base Exemples

Simplifier (x^(2/5)y^(-1/4))/((4x^-1y)^3)
Étape 1
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Appliquez la règle de produit à .
Étape 2.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Déplacez .
Étape 2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2.4
Associez et .
Étape 2.2.5
Associez les numérateurs sur le dénominateur commun.
Étape 2.2.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.6.1
Multipliez par .
Étape 2.2.6.2
Additionnez et .
Étape 2.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.4
Associez et .
Étape 2.5
Appliquez la règle de produit à .
Étape 2.6
Élevez à la puissance .
Étape 3
Associez et .
Étape 4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Associez et .
Étape 5.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Utilisez la règle de puissance pour associer des exposants.
Étape 5.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.2.3
Associez et .
Étape 5.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 5.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.5.1
Multipliez par .
Étape 5.2.5.2
Additionnez et .